
1220 VOLUME 132M O N T H L Y W E A T H E R R E V I E W

q 2004 American Meteorological Society

A Wavelet-Based Reduced Rank Kalman Filter for Assimilation of Stratospheric
Chemical Tracer Observations

LUDOVIC AUGER*
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ABSTRACT

A suboptimal Kalman filter system that evolves error covariances in terms of a truncated set of wavelet
coefficients has been developed for the assimilation of chemical tracer observations of CH 4. The truncation is
carried out in such a way that the resolution of the error covariance is reduced only in the zonal direction, where
gradients are smaller. Assimilation experiments, which lasted 24 days and used different degrees of truncation,
were carried out. These experiments reduced the number of elements in the covariance matrix by 90%, 97%,
and 99% and the computational cost of covariance propagation by 80%, 93%, and 96%, respectively. The
difference in both error covariance and the tracer field between the truncated and full systems over this period
was not found to be growing after about 5 days of assimilation. The largest errors in the tracer fields were found
to occur in regions of largest zonal gradients at times when observations were made in the immediate vicinity.

1. Introduction

The development of suboptimal Kalman filter
schemes for data assimilation has been motivated by the
need to reduce the computational expense of evolving
error covariances. These techniques can be roughly di-
vided into representation by direct reduced rank expan-
sion, Monte Carlo, and parameterized flow-dependent
covariance methods. Truncated expansion methods use
an efficient representation of the error covariance and
its propagator, such as singular vectors and eigenvectors
of the system matrix (Tippett et al. 2000; Farrell and
Ioannou 2001; Cohn and Todling 1996; Ehrendorfer and
Tribbia 1997), coarse-grid approximation (Fukumori
and Malanotte-Rizzoli 1995), EOFs (Cane et al. 1996),
or wavelets (Chin et al. 1999; Tangborn and Zhang
2000). These can then be truncated to a few leading
terms, resulting in a low-dimensional system. The Mon-
te Carlo or ensemble Kalman filter method (Evensen
1994; Houtekamer and Mitchell 1998) avoids the ex-
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pense of propagating error covariances by estimating
them from an ensemble of short-range forecasts. This
approach also has the advantage of obtaining current
ensemble statistics instead of relying on a tangent linear
model (TLM) to evolve error statistics. However, com-
putational limitations generally allow for ensemble sizes
in the hundreds, and therefore the possibility of spurious
solutions require the truncation of covariances for large
distances. Parameterized flow-dependent error covari-
ance (Riishøjgaard 1998) assumes that the background
error correlation has essentially the same shape as the
background field. This approach has the potential to
estimate anisotropic correlations with only a slightly
higher computational cost than isotropic error correla-
tions.

All of these approaches have the goal of estimating
local, anisotropic error correlations. An important step
developing an error covariance estimation scheme is
determining whether a given method has the potential
to be implemented in a realistic large-scale assimilation
system. A wavelet basis is a logical means for repre-
senting both the error covariances and the TLM because
the approximation is local in position and scale. Not
only is this representation highly compressive for an-
isotropic data, but it gives explicit information on the
location and scale of the most important covariance
structures. This allows for adaptive schemes to truncate
the wavelet expansion to a small number of significant
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terms and potentially could provide insight into the re-
lationship between important features in the error co-
variance and background fields. Further, wavelet trans-
forms apear to be an appropriate approach for solving
this sort of evolution equation given their successful
application to computational fluid dynamics during the
past 10 yr (Farge 1992).

Recent work on Kalman filtering of chemical tracer
observations (Ménard et al. 2000; Ménard and Chang
2000) has provided a benchmark with which to test
suboptimal schemes for tracer assimilation. In this sys-
tem, chemical species observations (e.g., CH4) from
limb-sounding instruments [Cryogenic Limb Array Eta-
lon Spectrometer (CLAES) and Halogen Occultation
Experiment (HALOE)] are assimilated into a global
two-dimensional transport model on isentropic surfaces.
All of the necessary specifications, including initial,
model, and observational error covariances, are de-
signed and tested in this work. Testing of a number of
simplifying assumptions that eliminate vertical error
correlations of observations, diabatic effects, vertical
mixing, and chemical sources and sinks is also done.
The results of this work show that the error covariances
do have some state dependence. Ménard and Chang
(2000) also discovered that there is significant loss of
error variance due to ‘‘spurious dissipation in the small-
scale covariance structures.’’ This problem was over-
come by introducing a variance correction term that
keeps the total error variance constant during the fore-
cast propagation step (and before the addition of model
error). The complexities of propagating the error co-
variance in wavelet space make this variance correction
step unviable. Therefore the variance loss issue is not
considered in the present work.

In this study, we have taken the Kalman filter system
developed by Ménard et al. (2000) and projected the
error covariances and covariance propagator (transport
model) onto an orthonormal wavelet basis. The resulting
system then carries out the propagation of error co-
variances in ‘‘wavelet space.’’ Several different levels
of truncation are used, and all of the results are com-
pared with the benchmark results in terms of error co-
variance, the constituent field, and computational time.
While the full system does not represent the true state,
its behavior is well understood, and we seek to under-
stand how this low-dimensional representation affects
the covariance evolution and how this in turn affects
the assimilated constituent field.

2. The transport advection scheme and constituent
assimilation system

The details of the Kalman filter assimilation scheme can
be found in Ménard et al. (2000), and we give a short
summary here. The evolution of a chemical constituent
field along an isentropic surface is governed by

t]m
t1 V · =m 5 f , (1)

]t

where m t is the true tracer mixing ratio, V is the hori-
zontal wind field along an isentropic surface, and = is
the horizontal gradient operator restricted to the isen-
tropic surface. The true state of any constituent field
will depend on chemical reaction (source and sink) and
diffusion and is represented by the random forcing term
f. The model used to make forecasts is conservative and
ignores the sources, sinks, and diffusion, so that f is
set to zero in the transport code.

The numerical model used to solve the transport equa-
tion is adapted from the Lin and Rood (1996) scheme,
which uses the conservative form

]m
1 = · (mV) 5 m= · V (2)

]t

and is solved by an operator splitting approach. The
system is solved offline using wind analyses V produced
by the Goddard Earth Observing Data Assimilation Sys-
tem (GEOS-DAS). The discretized equations have the
form

qm 5 M m 1 « ,kk11 k k (3)

where mk is the mixing ratio at time tk, and Mk the
discretized transport model from tk to tk11. The model
error in (3) comes from discretization and the ne-q« k

glected right-hand side of 1; is assumed to have zeroq« k

bias and be normally distributed, with associated co-
variance Qk. Ménard et al. (2000) showed that state-
dependent model error is a better choice than an iso-
tropic form. There, the model error covariance is as-
sumed to have the form

2 a a qQ (i, j) 5 d m (i)m (j)C (i, j),k k k (4)

where the correlation Cq(i, j) is given by

2|r 2 r |i jqC (i, j ) 5 exp , (5)1 2L

where L is the correlation length scale, r i and r j are
position vectors of two points on the sphere, and d is
a relative error parameter. The initial error covariance
matrix takes the same form as the model error covari-
ance

2P (i, j) 5 g m (i)m (j)C(i, j),0 0 0 (6)

where C(i, j) is the same as in (5).
The observations of mixing ratios at time tk, canomk

be related to the true mixing ratio by

o t om 5 H m 1 « ,kk k k (7)

where is the observation error, which includes con-o« k

tributions from measurement, retrieval, and represen-
tativeness errors. The observation error is assumed un-
biased, normally distributed, and state independent and
has associated error covariance matrix .oRk
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The Kalman filter algorithm consists of the forecast
step, which updates the constituent forecast, m f , and its
associated forecast error covariance, P f :

f am 5 M m , (8)k kk11

af TP 5 M P M 1 Q , (9)k k k kk11

and in the analysis step, the constituent analysis, ma,
and the analysis error covariance, Pa are calculated

f fa om 5 m 1 K (m 2 H m ), (10)k11 k11k11 k11k11 k11

a f TP 5 (I 2 K H )[(I 2 K H )P ]k11 k11 k11 k11 k11 k11

o T1 K R K , (11)k11 k11 k11

where the Kalman gain matrix Kk is given by
of f TT 21K 5 (H P ) (H P H 1 R ) . (12)k11 k11 k11 k11 k11k11 k11

The error covariance dynamics [Eq. (9)] are computed
by Ménard et al. (2000) using a two-step scheme that
corrects for variance loss. The forecast error covariance
is initially computed as

af TP 5 M P M ,k k kk11 (13)

and the error variance is treated as a conserved scaler
and computed as

afV 5 M V .k kk11 (14)

The computational grid for this assimilation is 72 3
46 (for the zonal and meridional directions).

3. Wavelet representation of error covariances

Wavelets are a family of basis functions with local
support. They are generated from scaling functions that
satisfy the recursion relationship

f(x) 5 c f(2x 2 k), (15)O k
k

where the choice of filter coefficients ck determines the
properties of the resulting scaling functions and wave-
lets. A small number of nonzero ck will give rise to
more localized wavelets, and a larger number of ck will
produce smoother (i.e., continuous higher derivatives)
wavelets. The basic wavelet function, c, for a given set
of filter coefficients can be derived from scaling func-
tions by taking differences:

kc(x) 5 (21) c f(2x 2 k). (16)O 12k
k

The representations of different scales and locations are
then obtained by dilating and translating c(x):

j/2 jc (x) 5 2 c(2 x 2 k),j,k (17)

where j refers to dilation (scale), and k refers to trans-
lation (location). The form of Eq. (17) implies that the
resolution scale decreases by a factor of 2 for each in-
crement in j.

We are employing the discrete wavelet transform be-

cause we wish to represent a covariance matrix by its
wavelet coefficients. The pyramidal wavelet transform
of Mallat (1989) recursively determines the coefficients
at each scale, from finest to coarsest, by calculating
weighted averages and differences at each scale. The
transform can be represented by a matrix, W, though
the matrix itself is never actually formed. We write the
transform in matrix form as

f̂ 5 Wf, (18)

where f is a vector in physical space, and f̂ are the
corresponding wavelet coefficients.

The discrete wavelet transform requires vectors with
lengths that are powers of 2, and NWP models generally
do not conform to this restriction. We therefore employ
a constant value padding that extends the vector length
from N to Np using the value at the last entry in f. This
method is demonstrated on a one-dimensional example.
We start with the function on [0, 1]:

cos(2px) for x # 0.1 or x $ 0.9
f (x) 5 50 elsewhere,

which results in a localized periodic function that cross-
es the periodic boundary. The function is discretized
using a grid of 115 equally spaced points, f i 5 f (xi),
then extended to 128 points using the value at f 115 to
pad the extended array so as to form the vector fp. The
discrete wavelet transform is then applied:

f̂ 5 Wf.

The vector f̂p is then truncated to 16 terms (a more severe
truncation than we are using in the assimilations) and
transformed back to physical space using the inverse
discrete wavelet transform. Figure 1 shows the original
f and the 16-term reconstruction, for both wavelet and
Fourier transforms. While there are Gibbs-type oscil-
lations near the most abrupt part of the function, there
is no loss of information accross the periodic boundary
as a result of the padding. This contrasts to the more
global errors that result from the 16-term Fourier re-
construction.

Representation of a function in two dimensions is
similar to Fourier or other bases; we use the product of
two functions:

ˆP(x, y) 5 P c (x)c (y), (19)O O j ,k , j ,k j ,k j ,kx x y y x x y y
j ,k j ,kk x y y

where P̂ is the wavelet coefficient for scales jx,j ,k , j ,kx x y y

jy and locations kx, ky. The scales and translations in
each direction are varied independently of each other.

In order to understand the structure of the matrix that
is to be represented by a wavelet basis, we plot an ex-
ample of the entire error covariance in Fig. 2 after a 9-
day assimilation. The (x, y) coordinates are collapsed
into a single vector (with the zonal direction incre-
mented in the inner loop). The indexing for the con-
stituent field is then
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FIG. 1. An example of the effect of padding on the reconstruction
of a function from truncated wavelet and Fourier expansions. The
periodic function f (x) is discretized on a grid of 114 points (solid
line) and padded to 128 points using the value f 114. The discrete
wavelet and Fourier transforms are applied, and the resulting coef-
ficients are truncated to 16 terms. The dash–dot and dotted lines shows
the function after application of the inverse discrete wavelet and
Fourier transforms, respectively.

FIG. 2. Error covariance for the entire two-dimensional domain
after a 9-day assimilation. The two-dimensional (72 3 46) gridded
field represented by this matrix is collapsed into a single vector of
length 3312. The error variances are represented by the main diagonal,
with the most southerly points at diagonals 1–72 and the most north-
erly grid points at diagonal elements 3241–3312. The northern grid
error variances are significantly larger than those in the southern
region because the CLAES latitudinal coverage is 808S–348N during
the period of the assimilation. The lack of observations in the high
latitudes results in a larger error variance there.

C 5 C ,k i,j (20)

where k 5 i 1 Nx(j 2 1), and Nx 5 72 is the number
of grid points in the zonal direction. Thus, the first 72
points on either axis represent the error covariances at
the most southerly grid points. The main diagonal rep-
resents the error variance as usual, and the last 72 points
represent the most northerly grid points. The covariance
between single point and the rest of the domain makes
up a single column in the covariance, as shown in Fig.
3. The next column in the matrix will be the covariance
for the grid point just to the right, and so on.

The transform from the physical space covariance to
wavelet representation is then

TP̂ 5 WPW , (21)

where P and P̂ are the physical and wavelet space co-
variance matrices, and W, WT represent the wavelet
transform and its transpose. For an N 3 N matrix, the
transform requires O(N 2 logN) operations. In the present
case the total number of grid points is 3312, but the
matrix will be padded to obtain a power of 2 (as is
needed by the discrete wavelet transform), so we will
have N 5 4096 after padding.

The structure of P f has significant implications for
truncation of P̂ f . Since the zonal direction is the inner

loop in (20), the finest scales in P f represent the small-
est-scale structures in the x direction, while y-direction
variations are at larger scales. Therefore a truncation to
L 5 1024 coefficients will mean that the two finest
scales (j 5 11, 12, corresponding to 58–108 resolution)
are removed in the zonal direction. Because of the struc-
ture of the error covariance, no information in the me-
ridional direction is lost by this truncation. Since the
steepest gradients in both the constituent field and the
error covariance are in the meridional direction, we ex-
pect the Kalman filter to be most sensitive to loss of
spatial information in this direction.

4. Description of the assimilation scheme in
wavelet space

We consider two schemes for carrying out the prop-
agation of error covariances in wavelet space. In the
first, the analysis covariance Pa and the transport model
M are projected onto a wavelet basis and the covariance
is propagated in wavelet space. The covariance is then
transformed back to physical space, and the analysis
covariance and Kalman gain are calculated. The second
approach leaves the analysis covariance in wavelet
space and also calculates the Kalman gain in wavelet
space. The former ensures that the nonuniform obser-
vation locations helps to introduce new wavelet coef-
ficients in adaptive schemes, while the latter eliminates
the need for forward and backward wavelet transforms
at each analysis time.
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FIG. 3. Schematic representation of how the error covariance for (bottom) a single
point becomes (top) a single column of the whole error covariance matrix.

We use a wavelet transform that comes from the fam-
ily of compactly supported orthonormal wavelets intro-
duced by Daubechies (1988). The fast discrete transform
of Mallat (1989) is employed and applied to the error
covariance,

a a TP̂ 5 WP W (22)

where W and WT represent the wavelet transform and
its transpose, respectively, and P̂a is the wavelet rep-
resentation of Pa.

Computation of the model dynamics in wavelet space
requires a bit more work because it is an operator rather
than a matrix. However, Mk can be computed by apply-
ing the model operator to the identity matrix since it
results in a matrix that carries out the same operations
when applied to a vector. We then compute the wavelet
representation of the model dynamics

TM̂ 5 WM W .k k (23)

The approximation of the covariance and model dy-
namics is made through truncation of (22) and (23) in
order to make use of the efficient representation of lo-
calized structures afforded by the wavelet representa-
tion. We consider two approaches to wavelet represen-
tation of covariances: (a) forecast covariance in wavelet
space/analysis covariance in physical space and (b) both
forecast and analysis covariances in wavelet space. Ex-
periments using these approaches will be described in
the next section.

a. Forecast in wavelet space/analysis in physical
space

Updating of m f remains the same,

f am 5 M m ,k kk11 (24)

while the previous analysis error covariance, model dy-
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namics, and model error are projected onto the wavelet
basis,

a a TP̂ 5 WP W , (25)k

TM̂ 5 WM W , (26)k k

TQ̂ 5 WQ W . (27)k k

The covariances and model dynamics are then truncated
to L equations, based on either scale or error variance
criteria. The truncated covariance is then updated,

f a Tˆ ˆ ˆ ˆ ˆ(P ) 5 (M ) (P ) (M ) 1 (Q ) .k k kL L k L L Lk11 (28)

The forecast error covariance is then transformed back
to physical space,

f fT ˆP 5 W P W,k11 k11 (29)

and the analysis step
f fa om 5 m 1 K (m 2 H m ), (30)k11 k11k11 k11k11 k11

a f TP 5 (I 2 K H )[(I 2 K H )P ]k11 k11 k11 k11 k11 k11

o T1 K R K , (31)k11 k11 k11

where the Kalman gain matrix Kk is given by
of f TT 21K 5 (H P ) (H P H 1 R ) . (32)k11 k11 k11 k11 k11k11 k11

b. Forecast and analysis covariance updated in
wavelet space

This scheme eliminates the need to transform the co-
variances between physical and wavelet space each
analysis time, but what about Qk and Mk? Because Mk

depends on the current winds and is continually chang-
ing, Eq. (26) is still needed, while Qk is calculated by
Eq. (4) as the product of the original correlation and
current variance field. A computationally more efficient
scheme for calculating Q̂k can be formulated by noting
that

qT T T T2WQ W 5 d (W[m ]W )(WC W )(W[m ]W ), (33)k k k

where [mk] is a matrix with diagonal elements mk. The
term WCqWT need only be computed once while the first
and third terms of (33) must be recomputed each anal-
ysis time.

We also note that, since only L rows and columns of
each matrix are being retained, the computation of the
forward wavelet transforms can be significantly reduced
by making use of the structure of the Mallat tree al-
gorithm when the truncation criterion is by scale. The
tree algorithm is a series of ‘‘averages’’ and ‘‘differ-
ences’’ taken at the finest scales first. This average on
each scale is used to calculate the average and difference
on the next coarser scale, and the complete set of dif-
ferences makes up the set of wavelet coefficients. If we
are retaining only the L largest coefficients, then only
averages need to be taken for the first N 2 L coefficients.

Since L K N for our assimilation, the difference cal-
culation is done for only a small fraction of the matrix.

The assimilation scheme again starts with an update
of m f ,

f am 5 M m .k kk11 (34)

Project the model dynamics onto the wavelet basis,

TM̂ 5 WM W .k k (35)

Project the mixing ratio contribution onto the wavelet
basis and compute new model error in wavelet space,

2 T q Tˆ ˆQ 5 d (W[m ]W )C (W[m ]W ),k k k (36)

where Ĉq is the initial error correlation model in wavelet
space.

Truncate dynamics and model error to L terms and cal-
culate new forecast error covariance in wavelet space,

af Tˆ ˆ ˆ ˆ(P ) 5 (M ) (P ) (M ) 1 (Q ) . (37)k k k kL L L L Lk11

Calculate analysis error covariance in wavelet space:

a f Tˆ ˆ ˆ ˆ ˆ ˆP 5 (I 2 K H )[(I 2 K H )P ]k11 k11 k11 k11 k11 k11

o Tˆ ˆ1 K R K , (38)k11 k11 k

K̂ 5 WK , and (39)k11 k11

TĤ 5 H W (40)k11 k11

are the Kalman gain and observation operator mixed
physical/wavelet space. Notice that is in physicaloRk11

space, because K̂ and K̂T are only right and left multi-
plied by the wavelet transform matrix, respectively.

5. Assimilation results

Success of any approximate scheme for evolving error
covariances is ultimately measured by the accuracy of
the analyses themselves and the reduction in compu-
tational cost that the scheme achieves. We also wish to
understand how well the wavelets represent the covari-
ance and dynamics matrices, and how the accuracy of
this representation affects the assimilation accuracy. It
is particularly important to understand the relationship
between the loss of error covariance information and
the decrease in assimilation accuracy that occurs as the
number of coefficients retained is reduced.

In all cases, the computational grid is 72 3 46, so
that each correlation matrix is 72 3 46 and the full
covariance matrix is then n 3 n 5 3312 3 3312. The
fast wavelet transform requires that the system dimen-
sion be a power of 2, so we pad the covariance to n 3
n 5 4096 3 4096. Truncation is carried out on the finest
scales first. The finest scale is always half of the total
number of coefficients; removing 2048 wavelet coeffi-
cients is equivalent to removing just the j 5 11 scale
in the zonal direction, for example.
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FIG. 4. Assimilation results with forecast error covariance updated in wavelet space and analysis
error covariance calculated in physical space. (a) The error correlation after 8 days for the full system,
and (b) the correlation after 8 days with a truncation of 1024 3 1024 wavelet coefficients. (c) The
mean quadratic difference in the analysis constituent fields for the truncated and full systems. The
x axis is number of 3-h analysis cycles. The total time is about 8 days.
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FIG. 6. Observation locations for the analysis time of the covariance shown in Fig. 5, on day 19 of the assimilation.

a. Forecast covariance in wavelet space

Constituent assimilation using both the full and trun-
cated error covariances has been carried out over a pe-
riod of 19 days. Truncation to L 5 1024, resulting in
the removal of the two finest zonal scales (j 5 10,11),
was used. The correlation for a single point after 9 days
of assimilation is shown in Fig. 4 for (a) the full system
and (b) L 5 1024. The correlation that results from the
truncated system is seen to be qualitatively and quan-
titatively very close to the full system correlation. The
rms difference in the constituent fields between the trun-
cated and full systems is shown in Fig. 4c. The error
incurred by truncation of the covariance and the TLM
shows an initial rapid increase that levels off around
2 days. This stabilization indicates that the approxi-1

2

mation scheme will not result in long-term error growth
relative to the full Kalman filter system.

Computational savings for this scheme, however,
were found to be rather small. While truncation of the
covariance propagation equation reduces the operation
count by (L/N)2 5 (1024/3312)2 5 1/10, the scheme
requires a forward and back wavelet transform on the
entire covariance and a forward transform on the prop-
agator each analysis time. Each transform consists of
O( ) operations (Np 5 4096 is the padded vector2N p

length), which in this case is carried out twice every 12
time steps. The computational savings over one analysis
cycle due to the wavelet truncation is nearly equal to
the computational cost of the wavelet transforms. Thus
there is no significant savings if the analysis error co-
variance is calculated in physical space. A further re-
duction in L will only slightly decrease the computa-
tional cost of the propagation step relative to the cost
of the wavelet transforms. We conclude that the analysis
error covariance needs to be determined in wavelet

space in order to realize any significant computational
savings.

b. Forecast and analysis covariance in wavelet space

Constituent assimilation was carried out for 24 days
(the same initial state as in the previous section) using
the approximation scheme in (34)–(40), with L 5 1024,
512, and 256. These are again compared with the bench-
mark assimilation that evolves the full error covariance
in physical space. The impact of the misspecification of
error covariance on the analysis field should be greatest
near observation locations during a given analysis cycle.
That is, if there are no observations in some region, no
assimilation is carried out there and no differences in
the analyzed field would be generated for the different
approximations of the error covariance. We examine this
impact by comparing full and approximated forecast
covariances for the point (438S, 458W) at three different
assimilation times. These can be divided into three dif-
ferent cases with respect to accuracy of error covariance
approximation and the proximity of satellite observa-
tions. The first case occurs when there are observations
in the vicinity of (438S, 458W) and the truncated wavelet
expansions do not accurately approximate the error co-
variance. In the second case there are also nearby ob-
servations, but the covariance approximation is consid-
erably better. The third case occurs when there are no
observations nearby. We examine the error covariance
between the node at (438S, 458W) and the rest of the
domain on three different days (19, 21, and 22) of the
assimilation and describe the relationship between the
accuracy of local error covariance and the relative ac-
curacy of the assimilated constituent field.

A case 1 example can be seen in Fig. 5, which shows
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FIG. 9. Observation locations for the analysis time of the covariance shown in Fig. 8, on day 21 of the assimilation.

the forecast error covariance on the 19th day (time step
1873). Shown in Fig. 5 is (a) full error covariance evo-
lution, along with wavelet space approximations that
retain (b) 1024 3 1024, (c) 512 3 512, and (d) 256 3
256 coefficients. The important structure of the covari-
ance for this point is the stretching to the southeast that
extends the 50% correlation contour as far as the 08
longitude and the 33% contour to around 508W. The
1024 3 1024 coefficient approximation accurately re-
produces this structure, but both the 512 3 512 and 256
3 256 approximations are unable to represent the gen-
eral shape. Figure 6 shows observation locations for the
analysis carried out using the forecast error covariances
in Fig. 5. Several observations lie within the region
where the correlations are above 50% for full covariance
evolution. In particular, several of the observations over
South America should impact the analysis along the
length of the narrow region from (358S, 608W) to (608S,
0). Figure 7 shows the CH4 concentration analysis field
on day 19 corresponding to the covariance fields in Fig.
5. Figure 7a shows the analysis field that results from
the evolution of the full error covariance, while Figs.
7b–d show the difference between the analysis fields
that result from the evolution of truncated (1024 3
1024, 512 3 512, and 256 3 256) wavelet expansions
for the error covariances. (It is important to recall that
in all cases the constituent field is evolved in physical
space and does not involve any truncation.) The finger
of high concentration extending from South America
into the South Atlantic in Fig. 7a corresponds to the
covariance region in Fig. 5. Figure 7b shows only small
differences in the constituent field (in the region of in-
terest) for the 1024 3 1024 error covariance truncation,
while Figs. 7c and 7d show significantly larger differ-
ences due to the relatively poor covariance represen-
tation. Note that outside the region of interest, there may

be little difference in the errors depending on the local
success of representing the error covariances.

An example of case 2 (good covariance approxima-
tion and with observations nearby) can be seen in Fig.
8. Now all of the truncated wavelet representations of
the covariance make reasonable approximations to both
the shape and magnitude. As a result, the nearby ob-
servations (Fig. 9) are assimilated to give constituent
analyses (Fig. 10) that show significantly smaller dif-
ferences with the full system in the region near the
covariance plot of Fig. 5. Case 3 occurs in the same
location on the 22d day of the assimilation, with error
covariances shown in Fig. 11 and a satellite observation
track (Fig. 12, which does not cross this covariance
region). The constituent analyses (Fig. 13) again show
little difference in the region of interest.

On day 19 of the assimilation, the local error co-
variance has significant gradients in the zonal direction.
This information is lost in the most severe truncations,
leading to the differences found in the constituent field
at that time. Later (day 21), the covariance in the same
region is primarily stretched in the zonal direction and
even the most severe truncation leads to a good ap-
proximation of the covariance field.

The relationship between zonal gradients in the con-
stituent field and assimilation accuracy are difficult to
show because even when there is no zonal gradient in
some region, earlier errors that have been advected (by
winds) to that region will show as local error. A some-
what more definite relationship can be made between
zonal constituent gradients and misrepresentation of the
error covariance by the reduced rank Kalman filter. Fig-
ure 14 shows a scatterplot of the normalized zonal con-
centration gradient, (dC/dx)/C, versus the rms difference
between full and 512 3 512 error covariances over a
15-day period. For any level of error in the covariance
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FIG. 12. Observation locations for the time of the error covariance shown in Fig. 11.

matrix, there is a maximum value for (dC/dx)/C that
increases from about 3 3 10214 to 10212 km21 as the
rms difference increases from 10215 to 2 3 10214 km21.
This indicates a general correlation between the mini-
mum error and the zonal constituent gradient. The over-
all scatter in the figure is most likely due to advected
errors that act to increase the rms error in the covariance
matrix in some locations even where the zonal gradient
is small.

Furthermore, not all of the differences in the con-
stituent field can be ascribed to loss of resolution in the
zonal direction. Farrell and Ioannou (2001) discussed
the issue of dynamics truncation, which can lead to
errors in covariance propagation at later times because
some growing modes may be lost. Also, truncation er-
rors in zonal direction error covariance can lead to more
general errors through the propagator, M.

It is also useful to plot the time evolution of the mean
absolute error,

1
E 5 |mi, j 2 m (i, j ) |DA , (41)Omean ref i, jA i, jtot

in the constituent field with respect to the full Kalman
filter system, shown in Fig. 15. We define DAi,j as the
area increment associated with node (i, j). The mean
error in the L 5 1024 case is seen to stop increasing
and actual decrease starting around the fifth day, while
the errors L 5 512 and L 5 256 cases show a decrease
followed by an increase starting at day 17. This last
feature is a result of a loss of data starting on day 12
and lasting through day 15. Because there are no ob-
servations during this interval, there are no analysis
increments, which would differ depending on the ac-
curacy of the evolved error covariance (thus reinforcing
the differences in the constituent fields). Once the ob-

servations resume, the analysis increments resume, cre-
ating the difference between the benchmark and the ap-
proximate covariance propagation. However, there is no
overall growth in errors between day 5 and day 24.

The reductions in computational costs associated with
this scheme over the course of a 24-day assimilation are
about 80% for L 5 1024, 93% for L 5 512, and 96%
for L 5 256. Each of these are compared with the Kal-
man filter system with error covariance evolved in phys-
ical space. The computational cost is roughly propor-
tional to L2, in spite of the additional expense of con-
structing the propagator in matrix form and projecting
it onto the wavelet basis each analysis time.

6. Discussion and conclusions

We have implemented a Kalman filter system for the
assimilation of chemical constituent observations from
limb-sounding instruments in which the error covari-
ances are propagated forward in terms of their wavelet
coefficients. This numerical scheme has been compared
with the benchmark system of Ménard et al. (2000) with
several different degrees of truncation of the wavelet
coefficients. The truncation removes the finest scales
first, and only in the zonal direction. Thus, as the number
of retained coefficients in the covariance propagation
are reduced, increasingly coarser scales are eliminated.
The important information that can be obtained from
these experiments is the relationship between changes
in the error covariances and the constituent field itself.
Since error variances are larger in regions of steep gra-
dients in the constituent field, the two-point covariances
will tend to be aligned in the zonal direction, as is seen
in Fig. 8. Structures with this shape will require a lower



MAY 2004 1235A U G E R A N D T A N G B O R N

F
IG

.
13

.
(a

)
A

na
ly

si
s

co
ns

ti
tu

en
t

fi
el

d
at

ti
m

e
st

ep
21

73
(1

20
0

U
T

C
on

th
e

22
d

da
y)

w
it

h
fu

ll
er

ro
r

co
va

ri
an

ce
pr

op
ag

at
io

n.
E

rr
or

s
w

it
h

re
sp

ec
t

to
(a

)
ar

e
sh

ow
n

fo
r

w
av

el
et

co
ef

fi
ci

en
t

tr
un

ca
ti

on
s

of
(b

)
10

24
3

10
24

,
(c

)
51

2
3

51
2,

an
d

(d
)

25
6

3
25

6.



1236 VOLUME 132M O N T H L Y W E A T H E R R E V I E W

FIG. 14. Log-scale scatterplot of dC/dx vs rms difference between full error covariance evolution and
the 512 3 512 approximation for the grid point located at (438S, 458W), over 15 days of the assimilation.
Each circle represents a single assimilation time.

FIG. 15. Mean absolute error for the constituent field relative to the benchmark (full covariance evolution) for a
24-day assimilation. The error is defined as e 5 1/A Si,j | m(i, j) 2 mref(i, j) | dAi,j, where dAi,j is the area associated
with the (i, j)th grid point and A is the global area. Both the forecast and analysis covariances are calculated in wavelet
space.

resolution in the zonal direction, thus allowing the fin-
est-scale coefficients in this direction to be eliminated.

These experiments show that as the resolution of the
error covariance propagation is reduced, errors in the
constituent field will increase more where the gradient
in the constituent field is largest. The largest represen-
tation errors in the error covariances are found to occur
where the gradients are steepest in the zonal direction.
However, transport of errors in the constituent field com-
plicates the relationship between zonal gradients and
assimilation errors.

While this work does not consider adaptive schemes
that vary the local scale retained according to a priori
estimates of the truncation error, these assimilation re-
sults give some insight as to how such a scheme might
work. We can take advantage of the fact that steep gra-

dients in the constituent field give rise to larger error
variances as well as sharp features in the covariance
field. The constituent forecast is updated before the error
covariance, so it is available for estimating the location
of small-scale features in the covariance field. An adap-
tive scheme of this could be combined with an error
covariance estimate from either a flow-dependent
scheme (Riishøjgaard 1998) or a low-order ensemble
Kalman filter (e.g., Houtekamer and Mitchell 1998).
This would allow the number of wavelet coefficients to
be further reduced with a very modest computational
expense. We have also not considered alternate wavelet
expansions that might better fit a spherical geometry
(Göttelmann 1999). However, we have not found any
significant errors generated by the pole problem, most
likely because there is little in the way of observations
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or gradients in the constituent field near the poles. These
issues will need to be addressed in the development of
more general assimilation systems.
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